# IS TEACHING MATHEMATICS HARD? IS IT HARDER TO TEACH INCLUSIVE MATHEMATICS, COMPUTATIONAL THINKING, AND ENGINEERING?

Michele Stites<sup>1</sup>, Susan Sonnenschein<sup>1</sup>, Jonathan Singer<sup>1</sup>, Hsiu-wen Yang<sup>2</sup>, Chih-Ing Lim<sup>2</sup>, Megan Vinh<sup>2</sup>, Hatice Gursoy<sup>1</sup>, Freya Kaur<sup>1</sup> Besjanë Krasniqi<sup>1</sup> <sup>1</sup>University of Maryland Baltimore County; <sup>2</sup>University of North Carolina Chapel Hill

# INTRODUCTION

- Children with disabilities are often denied opportunities to engage in STEM activities including mathematics, computational thinking, and engineering (Clements et al., 2021).
- It is widely accepted that literacy opportunities in preschool are more frequent than mathematics ones (Stites et al., 2019).
- Little is known about the frequency with which computational thinking and engineering occur in preschool.
- This presentation compares 10 Maryland Head Start teachers' ability to implement inclusive mathematics with their skills for implementing inclusive computational thinking, and engineering activities strategies following a four-day professional development focused on inclusive STEM and followup Networked Improvement Community (NIC) meetings.

### RESULTS

- Prior to the professional development
  - Participating teachers indicated needing support and lacking the confidence to engage students in activities addressing mathematics, computational thinking, and engineering.
- Following four days of intensive professional development
  - Teachers reported higher confidence levels in teaching mathematics but not computational thinking or engineering.
- Teachers were observed implementing **mathematics** activities more frequently than computational thinking or engineering.
- Teachers indicated they would benefit from additional support in computational thinking and engineering.

### **RESEARCH QUESTION**

• Do Head Start teachers fincrease the number of inclusive mathematics, computational thinking, and engineering opportunities following targeted professional development (PD) and on-going support using Networked Improvement Community (NIC) meetings?

# METHOD

#### Participants:

• 10 Head Start teachers from Maryland, with teaching experience ranging from five to 31 years.

#### Table 1

Outline of the study methodology.

## CONCLUSIONS

- Teachers reported higher confidence in teaching mathematics after professional development.
- Confidence in teaching computational thinking and engineering did not increase significantly.
- Mathematics activities were implemented more frequently than computational thinking or engineering.
- These results suggest that increasing preschool teachers' STEM involvement, especially with children with developmental disabilities, will require significant additional effort.

| Time point                  | Description                                                                                      | Measure                                                                                  |
|-----------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Baseline Data<br>collection | Collected Data on teacher beliefs,<br>practices, and efficacy for inclusion<br>and STEM teaching | <ul> <li>ICP</li> <li>STEM Instances<br/>tracking Form</li> <li>Teacher Self-</li> </ul> |
| During Summer<br>PD         | Assessed changes and progress in<br>teacher beliefs, practices, and<br>efficacy during PD        | Efficacy Scale<br>Inclusion Beliefs<br>Survey                                            |
| Following<br>Academic year  | Evaluated the long-term impact of PD<br>on teacher beliefs, practices and<br>efficacy.           |                                                                                          |





MCLS, Washington DC, June 2024